Reversible Syntheses of Cyclopentadienylrhodium–Triruthenium Cluster Complexes; Crystal and Molecular Structure of $(\eta$ -C₅Me₅)RhRu₃(μ -H)₄(CO)₉

W. Edward Lindsell,** Carolyn B. Knobler,^b and Herbert D. Kaesz*b

^a Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, U.K.

^b Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90024, U.S.A.

The mixed metal complexes cpRhRu₃(μ -H)₂(μ -CO)(CO)₉ (cp = η -C₅H₅ or η -C₅Me₅) and (η -C₅Me₅)RhRu₃(μ -H)₄(CO)₉ (in which the four bridging hydrogen atoms have been located in an *X*-ray structure determination) are formed when H₂ is bubbled through solutions of Ru₃(CO)₁₂ and the respective cpRh(CO)₂ at 70–90 °C but, under 1 atm CO at 25 °C, are easily disrupted into the starting materials, which are obtained with complete ¹³C-enrichment under 1 atm ¹³CO.

We wished to introduce the cpRh (cp = η -C₅H₅ or η -C₅Me₅) moiety into cluster complexes in order to make use of the nuclear spin of ¹⁰³Rh in elucidating intramolecular exchange processes. We were successful in synthesising the mixed metal cluster complexes but also found them to be easily disrupted into the starting materials (Scheme 1†).

The isomeric structures shown in Scheme 1 for (**3a**) and (**3b**) have been confirmed by X-ray studies.¹ These isomeric structures parallel those found for the analogous cobalt– and rhodium–triosmium complexes, $(\eta-C_5H_5)M(\mu-CO)Os_3(\mu-H)_2(CO)_9$ (M = Co² or Rh³) and $(\eta-C_5Me_4Et)Co(\mu-CO,\mu-H)Os_3(\mu-H)(CO)_{9,4}$ including, in the latter, a mixture of isomers in solution as observed for (**3b**). We find it significant that the subtle differences between homologous cyclopenta-dienyl derivatives are maintained despite a complete change in the metal atoms of the cluster.

For (4b), three-dimensional X-ray diffraction data[‡] were collected ($3^{\circ} < 2\theta < 50^{\circ}$) by the θ -2 θ scan method. The 6756 reflections for which $I/\sigma(I) > 3.0$ were corrected for Lorentz and polarisation effects and for absorption. Each molecule (Figure 1) consists of an (η -C₅Me₅)Rh unit linked to an Ru₃(μ -H)₂(CO)₉ fragment *via* an Rh-Ru bond and two hydrogen bridges. Within the Ru₃ fragment, hydrogen bridges connect Ru(1) · · · Ru(2) and Ru(1) · · · Ru(3). The Ru(2)-Ru(3) distance is comparable to those of other single bonds [2.8512(4), 2.8518(4), and 2.8595(4) Å in Ru₃(CO)₁₂]⁵ and significantly shorter than the bridged Ru · · · Ru distance.

In attempts to enrich products (3a), (3b), or (4b) with ¹³CO, we discovered that they are disrupted into the starting

† Spectroscopic data. (**3a**): v(CO) (hexane) 2088m, 2066s, 2049s, 2018m, 2009m, 2001w, 1982w, and 1827m cm⁻¹; ¹H n.m.r. (90 MHz, 26 °C) (C₆D₅CD₃) δ 5.16(s, C₅H₅) and $-17.2[s, (\mu-H)_2]$. (**3b**): v(CO) (KBr) 2072m, 2041s, 2012vs, 2000m, 1983s, 1960w, 1934w, and 1790s cm⁻¹. In solution, for an equilibrium mixture of apparently three isomers: v(CO) (light petroleum, b.p. 40–60 °C) 2089m, 2080m, 2060s, 2051m, 2042vs, 2035m, 2013m, 2004w, 1994w, 1831w, 1812w, and 1800w cm⁻¹; ¹H n.m.r. (90 MHz, 26 °C) (C₆D₅CD₃) δ (C₅Me₅), 1.63(s), 1.54(s), δ (μ-H) -13.0(s), -17.0(d, J 8 Hz), and -20.3(s). (**4b**): v(CO) (hexane) 2079s, 2051vs, 2043vs, 2008s, 2001w, 1994w, and 1989m cm⁻¹; ¹H n.m.r. (90 MHz, 26 °C) (C₆D₅CD₃) δ 1.71(s, C₅Me₅) and -15.93[d, (μ-H)₄, J 13.5 Hz].

‡ Crystal data: (η-C₅Me₅)RhRu₃(μ-H)₄(CO)₉, (**4b**), RhRu₃O₉ C₁₉H₁₉, M = 797.5, crystallizes from hexane (30 °C) as brown prisms; crystal dimensions $0.2 \times 0.14 \times 0.45$ mm, monoclinic, a = 17.470(1), b = 18.451(1), c = 17.200(1)Å, $\beta = 114.684(1)^{\circ}$, U = 5037.6(5)Å³, Z = 8, $D_c = 2.10$ g cm⁻³, space group $P2_1/a$ (C⁵_{2h}, No. 14), Mo-K_α radiation ($\lambda = 0.71069$ Å), μ (Mo-K_α) = 24.09 cm⁻¹, F(000) = 3056. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication. materials (Scheme 1) with complete ${}^{13}CO$ exchange. While (2) undergoes exchange at 25 °C with ${}^{13}CO$ (1 atm) (1) does *not*, *nor* does it exchange in the presence of an added amount of (2). Thus, attachment of the cpRh moiety to the Ru₃ skeleton as in (3a), (3b), or (4b), leads on disruption under ${}^{13}CO$ to the completely enriched starting materials Ru₃(${}^{13}CO$)₁₂ and cpRh(${}^{13}CO$)₂.

By contrast, the mixed metal cluster $Rh_2Ru_2(\mu-H)_2(CO)_{12}$ ⁶ requires 90 h under 1 atm CO at 25 °C to be converted back into $Rh_4(CO)_{12}$ and mixture of $Ru_3(CO)_{12}$ and $Ru(CO)_5$. Disruption of the cyclopentadienylcobalt-triosmium cluster complexes^{2,4} requires 50 bar CO (1 atm = 1.013 bar) and 50 or 150 °C and 2 or 4 h (respectively).⁴ Thus the disruptions observed in the present work proceed with appreciable

Figure 1. Interatomic distances (Å) and angles (°) for (4b) with estimated standard deviations: Rh–Ru(1) 2.735(1), 2.752(1), Rh \cdots Ru(2) 2.912(1), 2.888(1), Rh \cdots Ru(3) 2.891(1), 2.871(1), Ru(1) \cdots Ru(2) 2.926(1), 2.912(1), Ru(1) \cdots Ru(3) 2.938(1), 2.924(1), Ru(2)–Ru(3) 2.809(1), 2.813(1), Rh–H(B2) 1.70(7), 1.73(7), Rh–H(B3) 1.77(7), 1.71(7), Ru(1)–H(12) 1.71(7), 1.81(7), Ru(1)–H(13) 1.86(7), 1.78(7), Ru(2)–H(12) 1.72(7), 1.80(7), Ru(3)–H(13) 1.76(7), 1.82(7); Ru(1)–Rh \cdots Ru(2) 62.31(2), 62.11(2), Ru(1)–Rh \cdots Ru(3) 62.89(2), 62.63(2), Ru(2) \cdots Rh \cdots Ru(3) 57.89(2), 58.48(2).

velocity among the mildest conditions thus far observed for cluster disruption by CO,⁷ a fact which would need to be taken into account in postulating or attempting catalysis by these mixed metal species under homogeneous conditions.^{6,8}

We thank the Royal Society (London) for a Fellowship and the Council for International Exchange of Scholars for a Fulbright Scholarship (both to W.E.L. for period of residence at U.C.L.A.) and the National Science Foundation (U.S.) for support.

Received, 5th March 1985; Com. 295

References

- 1 W. E. Lindsell, C. B. Knobler, and H. D. Kaesz, J. Organomet. Chem., 1985, in the press.
- 2 J. S. Plotkin, D. G. Alway, C. R. Weisenberger, and S. G. Shore, J. Am. Chem. Soc., 1980, **102**, 6156; M. R. Churchill, C. Bueno, S. Kennedy, J. C. Bricker, J. S. Plotkin, and S. G. Shore, *Inorg. Chem.*, 1982, **21**, 627.
- 3 L.-Y. Hsu, W.-L. Hsu, D.-Y. Jan, A. G. Marshall, and S. G. Shore, *Organometallics*, 1984, **3**, 591.
- 4 J. Lewis, R. B. A. Pardy, and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1982, 1509.
- 5 M. R. Churchill, F. J. Hollander, and J. P. Hutchinson, *Inorg. Chem.*, 1977, **17**, 2655.
- 6 J. Pursiainen and T. A. Pakkanen, J. Chem. Soc., Chem. Commun., 1984, 252.
- 7 J. R. Fox, W. L. Gladfelter, and G. L. Geoffroy, *Inorg. Chem.*, 1980, **19**, 2574.
- 8 J. F. Knifton, J. Chem. Soc., Chem. Commun., 1983, 729.